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Canada's LLW Volume Projections to year 2025.

Canadian nuclear industry (m’) %
Refining 65,000 18

Fuel fabrication 14,800 4
Utilities 156,500 42
Isotopes and research 61,200 16
Licensed users 12,900 3
Industries using naturally radioactive feedstocks 57,100 15
Total 367,500 100

Irradiated fuel bays at Ontario Hydro's NGS.

Station Type Dimensions-m C ISD BFD LM
Width Length Depth

Pickering A/B PIFB 16.3 29.3 8.1 93/1581972/83 1995 E

AIFB 17 34 8.1 214 1978 1994 E

Bruce A/B PIFB 10 41 6 21/36 1977/83 2002 SS+E
IFB 18 46 9 352/330 1979/87 2002 SS+E

Darlington PIFB 9.7 20.65 212 1987 1996 SS

C = capacity 1000's bundles, ISD = in-service date, BFD =

bay fill date, LM = liner material (SS = Stainless steel, E =

Epoxy)



Irradiated fuel bay purification system capacity.

Station Type F-I's E Type F E

Pickering A/B PIFB 12/64 IX AIFB 65 F+IX

Bruce A/B PIFB 76/76 IX AIFB 38 IX
Darlington PIFB 92 F+IX

F = flow rate, E = equipment (F = filters, IX = ion exchange)

Used-fuel centre life-cycle cost and labour requirements.

Cost - 1991 M$ Labour - person*years
Estimate low nominal high low nominal high
Siting (23 a) 1850 2180 3050 6880 8100 11330
Construction (7 a) 1540 1810 2530 6240 7340 10280
Operation (41 a) 6850 8060 11280 33880 39850 55800
Decommissioning(16 a) 1060 1250 1750 5720 6730 9430
Closure (2 a) 30 30 40 120 150 200
Total 11320 13320 18650 52840 62170 87040
Scaled nominal cost (M$ 1991) and Duration (D in years)
estimates for disposal vault capacities of 5, 7.5 and 10.1
Million used-fuel bundles at depth of 1000 m.
Million of bundles 5 7.5 10.1

D Cost D Cost D Cost

Siting 23 2140 23 2160 23 2180
Construction 5 1520 6 1630 7 1810
Operation 20 4060 30 6040 41 8060
Decommissioning 13 940 15 1090 16 1250
Closure 2 30 2 30 2 30
Total 63 86380 76 10950 89 13320



Comparison of nominal cost (M$ 1991) and schedule
durations (D in years) for a disposal centre with a vault at
depths of 500 and 1000 m (Capacity = 10.1 million
used-fuel bundles).

Depth = 500 m 1000 m

D Cost D Cost
Siting 22 2110 23 2180
Construction 7 1780 7 1810
Operation 41 8060 41 8060
Decommissioning 14 1130 16 1250
Closure 2 30 2 30
Total 86 13110 89 13320

Percentage of contaminants present in different
compartments at 1E+4 a.

Amount remaining |I-129 [C-14 |Tc-99 ([U-238
in

Containers 96.06 |{28.0 91.0 99.99 1
Backfill + Buffer 3.85 |19 5.79 |2E-7 :I
Geosphere 0.07 10.02 0 0
0.02 |0 0 0

Released biosphere
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Mean concentrations (MC) of contaminants in soil and water
and their environmental increments (EI).
129-1 14-C
Mediom MC EI MC EI
Soil Bg/kg 2 1E-5 9E-3 9E-3
Water Bq/L 3E-3 4E-8 5E-4 2E-5

Arithmetic mean of the maximum doses to four hypothetical
organisms estimated in 1000 simulations for a 100 000-year
simulation time (mGy/a).

Nuclide Plant Fish Mammal Bird

129-1 4E-33E-3 1E-2 5E-2

14-C  2E-42E-2 S5E-4 5E-4

Total 4E-32E-2 1E-2 5E-2

Percentage of a nuclide released by a barrier over 100 000
years.

Nuclide T-a  Fuel Container Vault Rock
3-H 124 30 <<0.001 <<0.001 <<0.001
90-Sr 29.1 0.05 <<0.0011 <<0.001
39-Ar 269 8 0.08 <<0.001 <<0.001.
14-C 5730 6 60 0.8 0.007
239-Pu 2.41E+4 <<0.001 100 <<0.001 <<0.001
99-Tc 2.13E+5 6 100 <<0.0010.1

129-1 1.57E+7 6 100 10 5

Br stable 6 100 10 5§

Sb  stable <<0.001100 0.003 5



Maximum Estimated Risk (MER) and Time of Occurrence
(TO) from four human intrusion scenarios.

Scenario MER/y
Drilling 3E-10
Core Examination 9E-11
Construction 4E-13
Resident 3E-10

TO -y

40

500
3000

150

Amounts of contaminants (in mol) present in different

cm

artments at 1E+5 a.

| Amount in Br |C-14 (1129 [Kr81 |Pu- |U-238
| 239

| Inventory* 11000 ] 3000 |56000 |0.011 |19E+5 | 67E+7
| Containers 9900 |0.015 | 52000 |0.0072 | IE+5 | 67E+7
| Busfer 0 0 0 7E5 |5E4 |42

| Backfill 590 |16E-4 [3100 |SE4 |2E4 |8E-3

| Vault 11000 |16E-3 | 55000 | 8E-3 | 1E+5 |67E+7

| Released**

initial, ** to biosphere.

2E-2

81E-8

0.28

1E-8

0
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Pickering GS
Fuel Storage Basket
(32 Bundle Capacity, Storage
Density = 1393 kg Ulm3) Shipping and Storage Module
(96 Bundle Capacity, Storage
Density = 2189 kg U/m3)

Bruce GS

Irradiated Fuel Storage Tray
(20 Bundle Capacity, Storage
Density = 1683 kg U/m?)

Figure 2 Ontario Hydro Irradiated Fuel St'orall'ge Containers
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Figure} Pickering NGS-A Irradiated Fuel Stacking Frame
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Repeat Unit W

Montmorillonite Crystal Structure

Isomorphous substitutions and imperfections
in the crystal lattice give high negative charge.
{Cation exchange capacity = 80 meg/100 g,
specific surface area = 600 m2/g.)
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Illite Crystal Structure

Structure is similar to montmorilionite;
potassium ions bond the silica-alumina
layers. Crystal size is greater and surface
activity is less than that of montmorillonite.
(Cation exchange capacity = 20 meqg/100 g,
specific surface area = 80 m2/g.)

Kaolinite Crystal Structure
Kaolinite has the lowest surface activity
and largest crystal size.

(Cation exchange capacity = 5 meq/100 g,
specific surface area = 20 m2/g.)

FIGURE 4-3: Crystal Structures of Some Common Clay Minerals (after Lamt
and Vhitman 1969)
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FIGURE 5-19: The Processes Modelled in the Lake and Lake Sediments Model

The solid arrows show processes that are explicitly modelled in the surface water model and the open arrows indicate
processes that are implicitly considered (Davis et al, 1993). The primary sources of contaminants are the well (not shown) and
groundwater discharging through the overburden to the compacted sediments (these sediments underlie Pinawa Channel and
Boggy Creek shown in Figure 5-16). Contaminants leave the lake water by radioactive decay (not illustrated), particle

suspension and degassing 1o the atmosphere, sedimentation to the mixed sediments, pumping for domestic and irrigation use
by the critical group, and outflow downstream We assume that all contaminants eventually return to the lake, except those lost
by radioactive decay, outflow, and (for 4G and the noble gases) by degassing.
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FIGURE 5-20: The Processes Modelled in the Soil Model

The solid arrows show processes that are explicitly modeiled in the soil model, and the open arrows indicate processes that :
_implicitly considered (Davis et al. 1993). Four fields are modelled in a similar manner: a garden, a forage field, a woodlot anc
peat bog (shown In Figure 5-16). Contaminants enter each field by capillary rise from the water table below the soil, by air

deposition of contaminants, and (for the garden and forage field only) by irrigation using water from the lake or well.
Contaminants leave sach area by leaching, suspension, root uptake, and runoff to the lake.
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The arrows show processes that are explicitly modelled in the atmosphere model (Davis et al, 199
Contaminants enter outside air by degassing and suspension of particulates from the soil in the
fields, from the water of the lake and from fires (including. burning wood and peat for fuel).
Contaminants enter dwellings with the outside air, by releases from domestic water (from the lake
and the well), and by infiltration from soil around building foundations. We assume that the
contaminants are well mixed by dispersion in the air. '
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FIGURE 7-7: ESTIMATED MEAN DOSE RATE AND RISK AS A FUNCTION OF TIi |
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FIGURE 7-8: ESTIMATED DOSE RATES AT 10 000 YEARS



E1S79
L i i i M i A 1 1 i Rl |

——— AECB Risk Criterion =106

Estimate for |

Estimate for''C

10-10

Mean Dose Rate (mSv/a)
R |

(enoaye yljeay e uunoul
lenpiaipuy ue jo Ayiqeqoud) ysiy

s
- 10 12

v T — T
0 5x104 1x10°
Time (a)

FIGURE 7-9: CONTRIBUTIONS OF %] AND ¥C TO THE ESTIMATED MEAN DOSE RATE
AND RISK

-y ., -



£1571C

RS AR ST
-aurejuoy .
el

FICURE 7-10: CUMULATIVE FRACTION OF A NUCLIDE RELEASED BY THE BARRIERS



	Section 8
	1 LLW Incinerators in Canada
	2 CRNL shallow land burial (SLB) facility
	2 Ontario Hydro Irradiated Fuel Storage Containers
	3 Pickering NGS-A Irradiated Fuel Stacking Frame
	3 Central Pools - cutaway
	4 Spent Fuel Storage Facility
	3-26 Ontario Hydro Dry Storage Container, Original Cylindrical Design
	7 Cylindrical Concrete Canister
	10 Canisters in Operation
	8 Canister Storage Facility
	3-2.1 Options for the Storage and Disposal of
	ES-4 Used-Fuel Disposal Centre Perspective
	ES-1 Typical CANDU Fuel Bundle for Bruce Nuclear Generating Station
	2-5 Activity of the Used Fuel Specified for the Case Studies
	2-7 Heat From the Used Fuel Specified for the Case Studies
	2-10 Radiotoxicity of Various Radionuclides in Used CANDU Fuel
	Conceptual Distribution of Some Fission and Activation Products Within a Used-Fuel Element
	3-29 Titanium-Shell, Fuel-Reprocessing-Waste Disposal Cont with Vitrified-Waste Canister
	4-8a Expected Changes in Those Vault Parameters That Would Affect
	4-11 Schematic Showing the Basic Electrochemical, Chemical, and Transport Steps Involved in the Crevice
	4-3 Crystal Structures of Some Common Clay Minerals
	6-3 Cross Section of a Filled Disposal Room in the Pre Disposal-Facility
	Postclosure Assessment
	ES-2 Schematic Representation of the Three Main Assessment Models
	Schematic Representation of Groundwater Transport of Nucli from the Vault, 500 to 1000 m Underground, to the Biosphere
	5-19 The Processes Modelled in the Lake and Lake Sediments Model
	5-20 The Processes Modelled in the Soil Model
	5-21 The Processes Modelled in the Atmosphere Model
	7-5 Compartments and Pathways in the Post Biosphere-Model
	7-2 Process for Identifying and Evaluating Significant Scenarios
	Systems Variability Analysis
	7-7 Estimated Mean Dose Rate and Risk as a Function of Time
	7-8 Estimated Dose Rates at 10 000 years
	7-9 Contributions of 129 I and 14 C to the Estimated Mean Dose Rate
	7-10 Cumulative Fraction of a Nuclide Released by the Barriers


